Inflated Expectations, Unfulfilled Mandates, and Cost-Efficient Feedstock Systems for Cellulosic Biofuels

> Francis Epplin Department of Agricultural Economics Oklahoma State University

AAEA Extension Section Webinar 11 am Central April 20, 2011

Issues

- Energy
- Corn Ethanol
- Cellulosic Ethanol
- Drop-In Fuels
- What is a farmer to do?

Energy

- U.S. Crude Oil Use
- 19.1 million barrels per day in 2010

How Much is 19.1 Million Barrels of Crude Oil ?

- Daily U.S. use (2010)
- Accounts for about 38% of U.S. Energy Use

BP Deepwater Horizon Macondo

- Spilled crude oil for 87 days
- April 20 July 15, 2010
- Estimated 4.9 million barrels spilled
- How much was leaked relative to U.S. use?
- Equivalent to 6 hours of U.S. use

Issues

- Energy
 - 19.1 Million Barrels / day
 - 6 hours (2010 Gulf Oil Spill)
- Corn Ethanol
- Cellulosic Ethanol
- Drop-In Fuels
- What is a farmer to do?

Why corn ethanol ?

Historical context ----

• To address the "excess capacity" problem in U.S. agriculture

Corn Ethanol

- 2010
 - 13.2 billion gallons of ethanol from grain
 - Contained gross energy equivalent to 9 days of
 U.S. crude oil use
 - Diesel tractors, combines, and trucks don't use ethanol blends

Corn Ethanol

- 2010 corn crop
 - 12.66 billion bu
 - If every bu had been converted to ethanol it would contain gross energy equivalent to
 24 days (6.6%)
 of U.S. crude oil use

Issues

- Energy
 - 19.1 Million Barrels / day
 - 6 hours (2010 Gulf Oil Spill)
- Corn Ethanol
 - 9 days (2010)
- Cellulosic Ethanol
- Drop-In Fuels
- What is a farmer to do?

Cellulosic Ethanol

- 1910 Standard Alcohol Company built a cellulosic ethanol plant in South Carolina to process waste wood from a lumber mill, sold to DuPont who operated it until after WW I. (Source: Sherrard, E.C. and F. W. Kressman. 1945. "Review of Processes in the United States Prior to Wold War II." Industrial & Engineering Chemistry 37:5-8.)
- 1940s During WW II a cellulosic ethanol plant was funded by the Government as an insurance plant, in case of grain shortage.
- Economics was a secondary consideration during wartime

The Promise of Cellulosic Ethanol

• Convert "waste" to fuel

• Some early proponents projected feedstock cost to be close to zero.

 Some projected a "tipping" fee; expected that owners of "waste" would be willing to pay for someone to use it.

The Promise of Cellulosic Ethanol

(one example)

Science

Lynd et al. (1991)

hypothesized that by the year 2000,

technology would be developed enabling the production of **cellulosic ethanol** for a wholesale selling price of **\$0.60 per gallon** (1985 \$)

(**\$1.22** in 2010 dollars).

U.S. Energy Independence and Security Act of 2007 (EISA)

Renewable Fuel Standards 2 RFS2

- Mandated use of biofuels
 - these mandates are conditional on production or production capacity

U.S. Energy Independence and Security Act of 2007 (EISA)

Why mandates?

• Experts proclaimed it was doable

• Means to ensure a market by requiring existing system to use biofuels if produced

 Guaranteed market was expected to facilitate investment in biorefineries

EISA – 2007 - RFS2 Mandates

Source: http://www.pewclimate.org/federal/executive/renewable-fuel-standard

U.S. Energy Independence and Security Act of 2007 (EISA)

Cellulosic ethanol mandates

• 2010 100,000,000 gallons

• 2011 250,000,000 gallons

Unfulfilled Mandate

Cellulosic Ethanol

- 2010 mandate 100,000,000 gallons
 EPA reduced to 6,500,000 gallons
- 2011 mandate 250,000,000 gallons
 EPA reduced to 6,600,000 gallons

RFS2 Mandates for Cellulosic Ethanol

Failure to Meet Cellulosic Ethanol Mandate

Why?

• Conversion cost targets were not achieved

 Best of several competing technologies for conversion remains to be determined

Cost

Kazi et al. (2010) Evaluated Eight Alternatives for Producing Cellulosic Ethanol

- Lowest Cost Production System
 - Estimated Cost \$5.13 / gallon gasoline equivalent
 - Kazi, Fortman, Anex (Iowa State); Hsu, Aden, Dutta (NREL); Kothandaraman (ConocoPhillips) (Fuel 89 2010)

Failure to Meet Cellulosic Ethanol Mandate

Why?

• More costly to produce than anticipated

• Blend wall

Blend Wall

2010

 U.S. used 138.5 billion gallons of gasoline and blends that contained 13.2 billion gallons of ethanol

- When blends were limited to 10%, mandated levels of corn ethanol approached limit
 - flex fuel and 2001 and newer vehicles may use
 E15 if a source can be located

Reasons to Move Beyond Ethanol

- Ethanol is not an ideal liquid fuel substitute in a country with infrastructure and vehicles designed to use gasoline, diesel, and jet fuel.
- Less energy dense
- Mixes with water
- Can't be moved practically through U.S. pipeline system
- Requires splash blending or blender pumps
- Has higher vapor pressure
- Cost?

Reasons to Move Beyond Ethanol

• Other potential "drop-in" biofuels produced from cellulosic feedstock may be more economical

Issues

- Energy
 - 19.1 Million Barrels / day
 - 6 hours (2010 Gulf Oil Spill)
- Corn Ethanol
 - 9 days (2010)
- Cellulosic Ethanol
 - Unfulfilled expectations
- Drop-In Fuels
- What is a farmer to do?

Drop-In Biofuels

The ideal drop-in

- invisible to the operator
- meet fuel performance requirements of existing engines
- require no change to the current stock of engines
- could be mixed or alternated with petroleum fuels (wouldn't encounter a blend wall)
- require no change to the infrastructure
- be economically competitive

Example Drop-In Biofuel

- fast pyrolysis of **cellulosic biomass** to bio-oil
- upgrading of the bio-oil to naphtha and diesel range fuels.
- Wright et al. (2010) estimate production cost of \$2.11 per gallon of gasoline equivalent for the nth plant
 - (Of course this estimate may be as overly optimistic as the 1991 estimate of cellulosic ethanol production cost of \$1.22.)

Potential Feedstocks for Drop-In Biofuels

- Implications for agriculture if technology bypasses cellulosic ethanol?
- Crop residues and perennial grasses are also potential feedstocks for "drop-in" biofuels

Potential Feedstocks

- Municipal solid waste
- Forest residue
- Sugarcane bagasse
- Crop residue (corn stover, wheat straw)
- Dedicated energy crops
 - Perennial grasses (switchgrass, miscanthus)
 - Energy sorghum
 - Energy cane

Potential Feedstocks

- If the technology can use any of the feedstocks, expect entrepreneurs to locate plants near what they consider to be an inexpensive source of feedstock
 - The least-cost source will be used first

Quantity of Feedstock Required for a 2,000 tons per day Biorefinery

- 350 days of operation per year
- 700,000 tons of biomass per year
- 17 dry tons per truck
- 118 trucks per day
- 24 hours per day
- 4.9 trucks per hour

Biorefineries

• For 16 billion gallons per year

300 2000 tons/day plants
 5 trucks / hour each

150 4000 tons/day plants
 10 trucks / hour each

EPA Projections of Cellulosic Biorefineries to Fulfill RFS2 Mandates

One projection

Challenge for Biorefineries

- Highly coordinated harvest system
- Efficient system to provide a flow of biomass throughout the year from thousands of acres

Feedstock Flow Management 5-10 trucks/hour/plant

- Harvest
- Storage
- Transportation

- Most efficient system may differ depending on feedstock
 - Crop residue
 - Perennial grass

Contracts for Feedstock

- Most efficient contracting system may differ depending on feedstock
 - Crop residue
 - Perennial grass

Issues

- Energy
 - 19.1 Million Barrels / day
 - 6 hours
- Corn Ethanol
 - 9 days
- Cellulosic Ethanol
 - Unfulfilled expectations
- Drop-In Fuels
 - Норе
- What is a farmer to do?

What is a farmer to do?

- Wait until a contract is offered
- Evaluate alternatives
- Request assistance from local and state Cooperative Extension Service
- Prior to signing a contract, prior to investing in specialized equipment, and prior to establishing a perennial grass, consider the potential for biorefinery bankruptcy

Issues

- Energy
 - 19.1 Million Barrels / day
 - 6 hours
- Corn Ethanol
 - 9 days
- Cellulosic Ethanol
 - Unfulfilled expectations
- Drop-In Fuels
 - Норе
- What is a farmer to do?
 - Relax and farm

Challenges

- Economically viable conversion system
- Profitable business model
- Energy is a commodity
 - The least-cost source will be used first
 - In the absence of policy incentives (subsidies, carbon taxes, mandates) extremely difficult to compete with fossil fuels on cost

Summary

- Energy
 - 19.1 Million Barrels / day
 - 6 hours
- Corn Ethanol
 - 9 days
- Cellulosic Ethanol
 - Unfulfilled expectations
- Drop-In Fuels
 - Норе
- What is a farmer to do?
 - Relax and farm

Acknowledgements

Oklahoma Agricultural Experiment Station

• USDA/NIFA

Oklahoma Bioenergy Center

• Sun Grant Initiative

 Biobased Products and Energy Center at Oklahoma State University

